Conversión de números binarios a octales y viceversa

Observa la tabla siguiente, con los siete primeros números expresados en los sistemas decimal, binario y octal:

 

DECIMAL

BINARIO

OCTAL

0

000

0

1

001

1

2

010

2

3

011

3

4

100

4

5

101

5

6

110

6

7

111

7


Cada dígito de un número octal se representa con tres dígitos en el sistema binario. Por tanto, el modo de conver­tir un número entre estos sistemas de numeración equivale a “expandir” cada dígito octal a tres dígitos bi­narios, o en “contraer” grupos de tres caracteres binarios a su correspondiente dígito octal.


Por ejemplo, para convertir el número binario 1010010112 a octal tomaremos grupos de tres bits y los sustituiremos por su equivalente octal:

1012 = 58

0012 = 18

0112 = 38

y, de ese modo: 1010010112 = 5138

Ejercicio 9:

Convierte los siguientes números binarios en octales: 11011012, 1011102, 110110112, 1011010112

La conversión de números octales a binarios se hace, siguiendo el mismo método, reemplazando cada dígito octal por los tres bits equivalentes. Por ejemplo, para convertir el número octal 7508 a binario, tomaremos el equivalente binario de cada uno de sus dígitos:

78 = 1112

58 = 1012

08 = 0002

y, por tanto: 7508 = 1111010002

Ejercicio 10:

Convierte los siguientes números octales en binarios: 258, 3728, 27538


Anuncios

Sistema de numeración hexadecimal

En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decima­les 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.

Calculemos, a modo de ejemplo, el valor del número hexadecimal 1A3F16:


1A3F16 = 1*163 + A*162 + 3*161 + F*160


1*4096 + 10*256 + 3*16 + 15*1 = 6719


1A3F16 = 671910

Ejercicio 7:

Expresa en el sistema decimal las siguientes cifras hexadecimales: 2BC516,  10016,  1FF16

Ensayemos, utilizando la técnica habitual de divisiones sucesivas, la conversión de un número decimal a hexadecimal. Por ejemplo, para convertir a hexadecimal del número 173510 será necesario hacer las siguientes divisiones:

1735 : 16 = 108    Resto: 7

108 : 16 = 6           Resto: C es decir, 1210

6 : 16 = 0                Resto: 6

De ahí que, tomando los restos en orden inverso, resolvemos el número en hexadecimal:

173510 = 6C716

Ejercicio 8:

Convierte al sistema hexadecimal los siguientes números decimales: 351910, 102410, 409510

Conversión octal a decimal

La conversión de un número octal a decimal es igualmente sencilla, conociendo el peso de cada posición en una cifra octal. Por ejemplo, para convertir el número 2378 a decimal basta con desarrollar el valor de cada dígito:

2*82 + 3*81 + 7*80 = 128 + 24 + 7 = 15910


2378 = 15910

Ejercicio 6:

Convierte al sistema decimal los siguientes números octales: 458,   1258,   6258

Conversión de un número decimal a octal

La conversión de un número decimal a octal se hace con la misma técnica que ya hemos utilizado en la conversión a binario, mediante divisiones sucesivas por 8 y colocando los restos obtenidos en orden inverso. Por ejemplo, para escribir en octal el número decimal 12210 tendremos que hacer las siguientes divisiones:

122 : 8 = 15     Resto: 2

15 : 8 = 1           Resto: 7

1 : 8 = 0               Resto: 1

Tomando los restos obtenidos en orden inverso tendremos la cifra octal:


12210 = 1728

Ejercicio 5:

Convierte los siguientes números decimales en octales:  6310,   51310,   11910

Sistema de numeración octal

El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.

En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lu­gar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.

Por ejemplo, el número octal 2738 tiene un valor que se calcula así:

 

2*83 + 7*82 + 3*81 = 2*512 + 7*64 + 3*8 = 149610


2738
= 149610

Conversión de binario a decimal

El proceso para convertir un número del sistema binario al decimal es aún más sencillo; basta con desarrollar el número, teniendo en cuenta el valor de cada dígito en su posición, que es el de una potencia de 2, cuyo exponente es 0 en el bit situado más a la derecha, y se incrementa en una unidad según vamos avanzando posiciones hacia la izquierda.

Por ejemplo, para convertir el número binario 10100112 a decimal, lo desarrollamos teniendo en cuenta el valor de cada bit:


1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 83

10100112 = 8310


Ejercicio 4:
Expresa, en el sistema decimal, los siguientes números binarios:
110111, 111000, 010101, 101010, 1111110

El tamaño de las cifras binarias

La cantidad de dígitos necesarios para representar un número en el sistema binario es mayor que en el sistema decimal. En el ejemplo del párrafo anterior, para representar el número 77, que en el sistema decimal está compuesto tan sólo por dos dígitos, han hecho falta siete dígitos en binario.

Para representar números grandes harán falta muchos más dígitos. Por ejemplo, para representar números mayores de 255 se necesitarán más de ocho dígitos, porque 28 = 256 y podemos afirmar, por tanto, que 255 es el número más grande que puede representarse con ocho dígitos.

Como regla general, con n dígitos binarios pueden representarse un máximo de 2n, números. El número más grande que puede escribirse con n dígitos es una unidad menos, es decir, 2n – 1. Con cuatro bits, por ejemplo, pueden representarse un total de 16 números, porque 24 = 16 y el mayor de dichos números es el 15, porque 24-1 = 15.

Ejercicio 2:

Averigua cuántos números pueden representarse con 8, 10, 16 y 32 bits y cuál es el número más grande que puede escribirse en cada caso.

Ejercicio 3:

Dados dos números binarios: 01001000 y 01000100 ¿Cuál de ellos es el mayor? ¿Podrías compararlos sin necesidad de convertirlos al sistema decimal?

CONVERSIÓN ENTRE NÚMEROS DECIMALES Y BINARIOS

Convertir un número decimal al sistema binario es muy sencillo: basta con realizar divisiones sucesivas por 2 y escribir los restos obtenidos en cada división en orden inverso al que han sido obtenidos.

Por ejemplo, para convertir al sistema binario el número 7710haremos una serie de divisiones que arrojarán los restos siguientes:

77 : 2 = 38 Resto: 1

38 : 2 = 19 Resto: 0

19 : 2 = 9 Resto: 1

9 : 2 = 4 Resto: 1

4 : 2 = 2 Resto: 0

2 : 2 = 1 Resto: 0

1 : 2 = 0 Resto: 1

y, tomando los restos en orden inverso obtenemos la cifra binaria:


7710 = 10011012


Ejercicio 1:

Expresa, en código binario, los números decimales siguientes:  191, 25, 67, 99, 135, 276

SISTEMA BINARIO

El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).

En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.

De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:


1*23 + 0*22 + 1*21 + 1*20 , es decir:

8 + 0 + 2 + 1 = 11


y para expresar que ambas cifras describen la misma cantidad lo escribimos así:


10112 = 1110

SISTEMA DECIMAL

El sistema de numeración que utiliza­mos habitualmente es el decimal, que se compone de diez símbolos o dígi­tos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc.

El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la de­recha.

En el sistema decimal el número 528, por ejemplo, significa:


5 centenas + 2 decenas + 8 unidades, es decir:

5*102 + 2*101 + 8*100 o, lo que es lo mismo:

500 + 20 + 8 = 528

En el caso de números con decimales, la situación es análoga aunque, en este caso, algunos exponentes de las potencias serán negativos, concreta­mente el de los dígitos colocados a la derecha del separador decimal. Por ejemplo, el número 8245,97 se calcularía como:


8 millares + 2 centenas + 4 decenas + 5 unidades + 9 décimos + 7 céntimos

8*103 + 2*102 + 4*101 + 5*100 + 9*10-1 + 7*10-2, es decir:

8000 + 200 + 40 + 5 + 0,9 + 0,07 = 8245,97